Professional Course Examination, November 2018 (3rd Semester) #### BACHELOR OF COMPUTER APPLICATIONS Course: BCA-302 [Mathematics—III (Numerical Analysis)] (Revised) Full Marks: 75 Time: 3 hours (PART : A—OBJECTIVE) (*Marks*: 25) The figures in the margin indicate full marks for the questions SECTION—A (Marks: 15) Tick (✓) the correct answer in the brackets provided : $1 \times 10 = 10$ 1. The order of convergence in Newton-Raphson method is - (a) 2 () - (b) 4 () - (c) 3 () - (d) 0 () | 2. | In 1 | oisection method, the convergence is | |----|------|---| | | (a) | linear () | | | (b) | quadratic () | | | (c) | very slow () | | | (d) | very fast () | | 3. | The | Newton-Raphson method fails when $f(x)$ is | | | (a) | negative () | | | (b) | zero () | | | (c) | too large () | | | (d) | Never fails () | | 4. | A m | natrix a_{ij} 0 for i j is called matrix. | | | (a) | scalar () | | | (b) | unit () | | | (c) | diagonal () | | | (d) | upper triangular () | | 5. | The | relationship between the operation E and D is | | | (a) | D () | | | (b) | () | | | (c) | () | | | (d) | $E e^{hD}$ () | | | | | **6.** The degree of the differential equation $$\frac{d^2y}{dx^2} \quad \sqrt{1 \quad \frac{d^3y}{dx^3}^2}$$ is - (a) 1 () - (b) 2 () - (c) 3 () - (d) 4 () **7.** The polynomial f(x) is called an algebraic equation if f(x) is - (a) 0 () - (b) 1 () - (c) 3 () - (d) 2 () **8.** If y = x + y, y(0) = 1, then by Picard's method, the value of y(1) is - (a) 0.915 () - (b) 0.905 () - (c) 1·091 () - (d) 2·013 () 9. The number of strips required in Simpson's 3/8th rule is multiple of - (a) 1 () - (b) 2 () - (c) 3 () - (d) 6 () 10. If y y, y(0) 1, then by Euler's method, the value of y(1) is (a) 0.99 () (b) 0.999 () (c) 0.981 () (d) 0.813 () Indicate whether the following statements are *True (T)* or *False (F)* by putting a Tick (\checkmark) mark in the brackets provided : $1\times5=5$ **1.** The order of the highest order derivative occurring in a differential equation is called degree of the differential equation. (T / F) **2.** The bisection method for finding the roots of an equation f(x) 0 is $$x_{n-1}$$ $\frac{x_n - x_{n-1}}{2}$ (T / F) 3. The formula of trapezoidal rule is **5.** Extrapolation is defined as the process of estimating the value of a function outside the given range of values. (T / F) SECTION—B (Marks: 10) Answer the following questions: $2 \times 5 = 10$ - 1. Write the formula for Gauss forward interpolation formula. - **2.** Show that 2 (). - **3.** To which form the coefficient matrix is transformed when $AX ext{ } B$ is solved by Gauss-Jordan method? - **4.** Prove that $y = ax^3bx^2 = c$ is the solution of $\frac{d^3y}{dx^3} = 6a$. - 5. Write the formula for Newton's backward interpolation formula. ## (PART : B—DESCRIPTIVE) (Marks : 50) The figures in the margin indicate full marks for the questions - **1.** (a) Solve the system of equations x y z 9, 2x 3y 4z 13 and 3x 4y 5z 40 by using Gauss elimination method. - (b) Find a real root of x^3 4x 9 0, correct to three decimal places, by using regula-falsi method. OR - (c) Find the root of x^3 2x 5 0, correct to three decimal places, by using Newton-Raphson method. - (d) Solve the system of equations $2x \ 3y \ z \ 9$, $x \ 2y \ 3z \ 6$ and $3x \ y \ 2z \ 8$ by using factorization method. 5 5 5 | (a) | Prove the follow | wing: | | | | | | | 3+2=5 | |--------------|--|--|--|--|---|---|---|---|--| | | (i) $\frac{1}{2}$ (|) | | | | | | | | | | (ii) — | _ | | | | | | | | | (b) | Find the sum | of the seri | es | | | | | | | | | 3 | 8 6 13 | 9 | 14 . | to <i>r</i> | ı-term | ıs | | 5 | | | | | | OR | | | | | | | (c) | Evaluate $\int_{0}^{1} \frac{\tan x}{1}$ | $\frac{1}{x^2} \frac{1}{x} dx.$ | | | | | | | 5 | | (d) | Express $y = 2x$ | $3 \ 3x^2 \ 3$ | x 10 | in fa | ctoria | ıl nota | ation. | Find ⁴ | ¹ y. 5 | | (a) | Find f (0) and | f (0), give | n tha | t | | | | | | | | | x 0 | 1 | 2 | 3 | 4 | 5 | | | | | | y 4 | 8 | 15 | 7 | 6 | 2 | | | | | | | | • | | | | - | 5 | | (h) | By using Romh | era's meth | od es | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 . | $\frac{dx}{dx}$ | orrect | to three | decimal | | (<i>D</i>) | | erg o mem | .ou, c | araat | 01 | x | nicct | to tiffee | | | | places. | | | 0 D | | | | | 5 | | | | | | OR | | | | | | | (c) | Evaluate $\int_{0}^{1} \frac{dx}{1}$ | $\frac{c}{x}$ by using | g— | | | | | | | | | (i) trapezoidal | rule; | | | | | | | | | | _ | • | | | | | | | | | | . , - | • | ; | | | | | | | | | | ıle. | | | | | | | 5 | | (d) | Evaluate 1 1 xe 0 0 | ^y dxdy by | using | trape | zoida | l rule | • | | 5 | | | (b) (c) (d) (a) (b) | (i) $\frac{1}{2}$ ((ii) — (b) Find the sum (c) Evaluate $\frac{1}{0} \frac{\tan x}{1}$ (d) Express $y = 2x$ (a) Find f (0) and (b) By using Romb places. (c) Evaluate $\frac{1}{0} \frac{dx}{1}$ (i) trapezoidal (ii) Simpson's (iii) Simpson's (iv) Weddle's rule (d) Evaluate $\frac{1}{x}$ | (b) Find the sum of the seri 3 8 6 11 (c) Evaluate $\frac{1}{0} \frac{\tan^{-1} x}{1 + x^2} dx$. (d) Express $y = 2x^3 + 3x^2 + 3$ (a) Find $f(0)$ and $f(0)$, gives $\frac{x}{y} = 0$ (b) By using Romberg's method places. (c) Evaluate $\frac{1}{0} \frac{dx}{x}$ by using (i) trapezoidal rule; (ii) Simpson's 1/3rd rule (iii) Simpson's 3/8th rule (iv) Weddle's rule. (d) Evaluate $\frac{1}{x} e^y dx dy$ by the first series of the | (i) 1/2() (ii) (b) Find the sum of the series 3 8 6 11 9 (c) Evaluate 1/0 1/1 x² dx. (d) Express y 2x³ 3x² 3x 10 (a) Find f (0) and f (0), given that x 0 1/y 4 8 (b) By using Romberg's method, explaces. (c) Evaluate 1/0 1/x by using— (i) trapezoidal rule; (ii) Simpson's 1/3rd rule; (iii) Simpson's 3/8th rule; (iv) Weddle's rule. (d) Evaluate xe^ydxdy by using | (i) $\frac{1}{2}$ () (ii) $ -$ (b) Find the sum of the series 3 8 6 11 9 14 . OR (c) Evaluate $0 \frac{1 \tan^{-1} x}{1 x^2} dx$. (d) Express $y = 2x^3 - 3x^2 - 3x = 10$ in faction (a) Find f (0) and f (0), given that $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (i) $\frac{1}{2}$ () (ii) $ -$ (b) Find the sum of the series 3 8 6 11 9 14 to r OR (c) Evaluate $0 \frac{1 \tan^{-1} x}{1 x^2} dx$. (d) Express $y = 2x^3 - 3x^2 - 3x = 10$ in factorial (a) Find f (0) and f (0), given that $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (i) $\frac{1}{2}$ () (ii) $ -$ (b) Find the sum of the series $3 \ 8 \ 6 \ 11 \ 9 \ 14 \ \dots$ to n -term OR (c) Evaluate $\frac{1 \tan^{-1} x}{0 \ 1 \ x^2} dx$. (d) Express $y \ 2x^3 \ 3x^2 \ 3x \ 10$ in factorial notation of $x \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$ | (i) $\frac{1}{2}$ () (ii) $$ (b) Find the sum of the series $3 \ 8 \ 6 \ 11 \ 9 \ 14 \ \dots$ to n -terms OR (c) Evaluate $\frac{1 \tan^{-1} x}{0 \ 1 \ x^2} dx$. (d) Express $y \ 2x^3 \ 3x^2 \ 3x \ 10$ in factorial notation. (a) Find f (0) and f (0), given that $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (i) $\frac{1}{2}$ () (ii) $ -$ (b) Find the sum of the series 3 8 6 11 9 14 to n -terms OR (c) Evaluate $\frac{1}{0} \frac{\tan^{-1} x}{1 \cdot x^2} dx$. (d) Express $y = 2x^3 - 3x^2 - 3x = 10$ in factorial notation. Find (a) Find f (0) and f (0), given that $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6 [Contd. III/BCA/302 (R)**/367** **4.** (a) Find the value of y at x 42 by using Newton's forward interpolation formula, given that | х | 20 | 25 | 30 | 35 | 40 | 45 | |---|-----|-----|-----|-----|-----|-----| | y | 354 | 332 | 291 | 260 | 231 | 204 | (b) Find f (1.22), using Gauss backward interpolation formula, given that | X | 1 | 1.1 | 1.2 | 1.3 | 1.4 | |------|-------|-------|-------|-------|-------| | f(x) | 0.841 | 0.891 | 0.932 | 0.963 | 0.985 | OR (c) Find the polynomial f(x) by using Lagrange's method and hence find f(6) for | х | 0 | 1 | 2 | 5 | |------|---|---|----|-----| | f(x) | 2 | 3 | 12 | 147 | (d) Using Newton's divided formula, evaluate f (8) for | х | 4 | 5 | 7 | 10 | 11 | 13 | |------|----|-----|-----|-----|------|------| | f(x) | 48 | 100 | 294 | 900 | 1210 | 2028 | **5.** (a) Evaluate y(0.2) such that y=1=2xy, y(0)=0 by using Taylor's series. (b) Using Runge-Kutta method, solve $$\frac{dy}{dx} \quad \frac{y^2}{y^2} \quad \frac{x^2}{x^2}$$ with y(0) 1 at x 0.2. 5 5 5 5 OR (c) Solve the following: (i) $$\frac{dy}{dx}$$ e^x y (ii) $$\frac{dy}{dx} = \frac{x}{x} = \frac{y}{y}$$ (iii) $$(x^2 \quad 1)\frac{dy}{dx} \quad 2xy \quad \frac{2}{(x^2 \quad 1)}$$ * * * # Student's Copy # **Professional Course Examination, November 2018** | (3rd Semester) | | |--|----------| | BACHELOR OF COMPUTER APPLICATIONS | | | Course : BCA-303 | | | (Operating Systems) | | | (Revised) | | | Full Marks : 75 | | | Time: 3 hours | | | (PART : A—OBJECTIVE) | | | (<i>Marks</i> : 25) | | | The figures in the margin indicate full marks for the questions | | | SECTION—A | | | (<i>Marks</i> : 15) | | | Tick (✓) the correct answer in the brackets provided: | ×10=10 | | 1. Operating system does not interact with the computer directly. Each us prepares his job on an off-line device like punch cards and submits it the computer operator. This is known as | | | (a) batch operating system () | | | (b) time-sharing operating system () | | | (c) distributed operating system () | | | (d) network operating system () | | | /368 1 | [Contd. | | 2. | Whi | ich of the following is not an operating system service? | |----|-----|---| | | (a) | Communication () | | | (b) | Error detection () | | | (c) | Program execution () | | | (d) | System call () | | 3. | | time it takes for the dispatcher to stop one process and start another ning is known as | | | (a) | scheduler () | | | (b) | CPU utilization () | | | (c) | context switch () | | | (d) | dispatch latency () | | 4. | Whi | ich of the following is not multithreading model? | | | (a) | One-to-one () | | | (b) | Many-to-one () | | | (c) | One-to-many () | | | (d) | Many-to-many () | | 5. | Pag | e fault occurs when | | | (a) | the page is not in main memory () | | | (b) | the page is in main memory () | | | (c) | the page enters the block state () | | | (d) | the process is in ready state () | | | | | | 6. | Virt | cual memory is commonly implemented by | |-----------|------|--| | | (a) | segmentation () | | | (b) | swapping () | | | (c) | demand paging () | | | (d) | page replacement () | | | | | | 7. | A f | ile is | | | (a) | single-level directory () | | | (b) | an abstract data type () | | | (c) | tree structure directory () | | | (d) | backup and restore () | | | | | | 8. | The | ere are no cycles in which type of directory? | | | (a) | General graph directory () | | | (b) | A cyclic graph directory () | | | (c) | One-level directory () | | | (d) | Two-level directory () | | | | | | 9. | Res | ources are allocated to a process on non-sharable basic in | | | (a) | mutual exclusion () | | | (b) | hold and wait () | | | (c) | no preemption () | | | (d) | circular wait () | | | | | | 10. Which of the following is not system threat? | | |---|---------------| | (a) Worm () | | | (b) Port scanning () | | | (c) Denial of service () | | | (d) User card () | | | | | | | | | Indicate whether the following statements are $True(T)$ or $False(F)$ by putti a Tick (\checkmark) mark in the brackets provided: | ng
1×5=5 | | | | | 1. A process is the fundamental unit of work in an operating system. | | | (T / T | F) | | 2. Thread is heavy weight. | | | (T / T | F) | | | | | 3. Best fit allocates the first hole that is big enough. | 7 2.) | | (T / T | f <i>)</i> | | 4. Linked allocation solves all problems of contiguous allocation. | | | (T / T | F) | | | | | 5. Viruses need other programs to spread. | F) | | (1) | · <i>)</i> | | III/BCA/303 (R) /368 | [Contd. | | SECTION— | -B | |----------|----| |----------|----| (*Marks*: 10) Answer the following questions: $2 \times 5 = 10$ - 1. What are the different operating systems? - 2. Compare preemptive scheduling and non-preemptive scheduling. - 3. What is translation lookaside buffer (TLB)? - **4.** What is access control list (ACL)? - 5. Define Trojan Horse. #### (PART : B—DESCRIPTIVE) (*Marks* : 50) The figures in the margin indicate full marks for the questions 1. (a) What is an operating system? What are the functions performed by it? 3+3=6 (b) Explain single user and batch system in detail. 4 OR - (c) Explain the essential properties of the real time and clustered system of operating system. - (d) Distinguish between multitasking and multiprogramming operating systems. 6 4 | 2. | (a) | What is a process? With the help of a state transition diagram, explain the various states of a process. 2+4=6 | | | | | | |----|-----|---|---------------|----------------|---------------|------------------|--------| | | (b) | Define throug | hput and to | urnaround ti | me in a n | nultiprogrammin | g
4 | | | | | | OR | | | | | | (c) | Explain the rou | and robin sch | neduling algor | ithm with a | suitable example | e. 4 | | | (d) | Consider the fortime given in | _ | - | rith a length | of the CPU burs | t | | | | | Process | Burst Time | Priority | | | | | | | P1 | 10 | 3 | | | | | | | P2 | 1 | 1 | | | | | | | P3 | 2 | 4 | | | | | | | P4 | 1 | 5 | | | | | | | P5 | 5 | 2 | | | | | | The processes time 0. | have arrived | in the order | P1, P2, P3, | P4 and P5, all a | ıt | | | | (i) Draw Gant
priority scl | | trating the ex | xecution of t | his process usin | g | | | | (ii) Calculate t | the average v | waiting time. | | | | | | | (iii) Calculate t | he average t | turnaround ti | me. | | 6 | | | | . , | G | | | | | | 3. | (a) | What is segme | entation? Exp | plain basic se | egmentation | method. | 7 | | | (b) | Determine the total swap time for a user process of size 10 MB with a disk transfer rate of 40 MB per second and latency time is 12 msec. | | | | | | | | | | | OR | | | 3 | | | | | | | | | | | | (c) | Explain proces | ss creation. | | | | 4 | | | (d) | Discuss demai | nd paging in | memory ma | nagement. | | 6 | 6 III/BCA/303 (R)**/368** [Contd. 4. (a) Briefly explain about single-level, two-level and tree structured directories. 10 OR - (b) What is file protection? Explain the different types of access control. 10 - **5.** (a) What is deadlock? What are the necessary conditions for a deadlock situation? 6 (b) Describe a resource allocation graph. 4 OR (c) Explain the safe and unsafe states for deadlock. 4 6 (d) Consider the following snapshot of a system: | Process | Allocation | Мах | Available | | | | | |---------|------------|---------|-----------|--|--|--|--| | | A B C D | A B C D | A B C D | | | | | | P0 | 0 0 1 2 | 0 0 1 2 | 1 5 2 0 | | | | | | P1 | 1 0 0 0 | 1 7 5 0 | | | | | | | P2 | 1 3 5 4 | 2 3 5 6 | | | | | | | Р3 | 0 6 3 2 | 0 6 5 2 | | | | | | Answer the following questions using the Banker's algorithm: - (i) What is the content of the matrix Need? - (ii) Is the system in a safe state? - (iii) If a request from process P1 arrives for (0, 4, 2, 0), can the request be granted immediately? ### **Professional Course Examination, November 2018** (3rd Semester) #### BACHELOR OF COMPUTER APPLICATIONS Course: BCA-303P #### (Unix and Shell Programming) (Practical) (Revised) Full Marks: 75 Time: 3 hours The figures in the margin indicate full marks for the questions #### SECTION—A #### Answer any two questions **1.** Write a program to create five directories, list all the directories using the wild- card and remove the directory iteratively. 2. Write a program to calculate the sum of five-digit number. 15 15 **3.** Write a shell script which displays information about a given file in proper format. /371 1 [Contd. # SECTION—B # Answer any one question | 4. | write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of ₹ 15.00 per hour for every hour worked above 35 hours. | 20 | |----|---------------------------------------------------------------------------------------------------------------------------------------------------|----| | 5. | Write a shell script which displays a list of all files in the current directory to which you have read, write and execute permission. | 20 | | | SECTION—C | | | 6. | Viva voce. | 15 | * * * 10 7. Practical Record Book. ### **Professional Course Examination, November 2018** (3rd Semester) #### BACHELOR OF COMPUTER APPLICATIONS Course: BCA-304 (Object-oriented Programming in C++) (Revised) Full Marks: 75 Time: 3 hours (PART : A—OBJECTIVE) (*Marks*: 25) The figures in the margin indicate full marks for the questions SECTION—A (Marks: 15) Tick (✓) the correct answer in the brackets provided : $1 \times 10 = 10$ 1. How many access specifiers are present in C++? - (a) One (1) () - (b) Two (2) (- (c) Three (3) () - (d) Four (4) () | Wh | ich of the fo | ollow | ing | header | file | include | es d | definitio | n of | cin | and | cout | ? | |-------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | (a) | istream.h | | (|) | | | | | | | | | | | (b) | ostream.h | | (|) | | | | | | | | | | | (c) | iomanip.h | | (|) | | | | | | | | | | | (d) | iostream.h | | (|) | | | | | | | | | | | XX71- | : -15 41 5- | .11 | : | 1 | .1. : | | 4 | 1 | 1 | | 4 | ··· 2 | | | wn | ich of the fo | ollow | ıng | keywoi | as 1 | is used 1 | to (| overioac | i an | ope | rato | r۲ | | | (a) | Operator | (| |) | | | | | | | | | | | (b) | Public | (|) | | | | | | | | | | | | (c) | Overload | (| |) | | | | | | | | | | | (d) | Friend | (|) | | | | | | | | | | | | | | | | | | | | | | | | | | | Wh | ich one of t | he fo | ollov | ving is | not | a valid | res | served k | eywo | ord | in C | ;++; | | | (a) | Public | (|) | | | | | | | | | | | | (b) | Implicit | (|) | | | | | | | | | | | | (c) | Private | (|) | | | | | | | | | | | | (d) | Explicit | (|) | | | | | | | | | | | | CA/3 | 304 (R) /369 | | | | | 2 | | | | | | | [Contd. | | | (a) (b) (c) (d) Wh (a) (b) (c) (d) (b) (c) (d) (d) | (a) istream.h (b) ostream.h (c) iomanip.h (d) iostream.h Which of the formal (a) Operator (b) Public (c) Overload (d) Friend Which one of the formal (a) Public (b) Implicit | (a) istream.h (b) ostream.h (c) iomanip.h (d) iostream.h Which of the follow. (a) Operator ((b) Public ((c) Overload ((d) Friend (Which one of the follow. (a) Public ((b) Implicit ((c) Private ((d) Explicit (| (a) istream.h ((b) ostream.h ((c) iomanip.h ((d) iostream.h (Which of the following (a) Operator ((b) Public () (c) Overload ((d) Friend () Which one of the following (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywork (a) Operator () (b) Public () (c) Overload () (d) Friend () Which one of the following is (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is (a) Operator () (b) Public () (c) Overload () (d) Friend () Which one of the following is not (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used (a) Operator () (b) Public () (c) Overload () Which one of the following is not a valid (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to a second of the following is not a valid result | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to overload (a) Operator () (b) Public () (c) Overload () (d) Friend () Which one of the following is not a valid reserved keywords is used to overload keywor | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to overload an (a) Operator () (b) Public () (c) Overload () Which one of the following is not a valid reserved keywords is used to overload an () (d) Friend () Which one of the following is not a valid reserved keywords is used to overload an () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to overload an ope (a) Operator () (b) Public () (c) Overload () Which one of the following is not a valid reserved keyword (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (a) istream.h () (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to overload an operato (a) Operator () (b) Public () (c) Overload () (d) Friend () Which one of the following is not a valid reserved keyword in C (a) Public () (b) Implicit () (c) Private () (d) Explicit () | (b) ostream.h () (c) iomanip.h () (d) iostream.h () Which of the following keywords is used to overload an operator? (a) Operator () (b) Public () (c) Overload () Which one of the following is not a valid reserved keyword in C++? (a) Public () (b) Implicit () (c) Private () (d) Explicit () | | 5. | Wh | ich one of the following is not a type of constructor? | | |-------|------|---------------------------------------------------------------------------------------------------|--------| | | (a) | Copy constructor () | | | | (b) | Default constructor () | | | | (c) | Friend constructor () | | | | (d) | Parameterized constructor () | | | 6. | Wh | ich one of the following symbols is used to create multiple inheritance? | | | | (a) | Dot (.) () | | | | (b) | Comma (,) () | | | | (c) | Space () () | | | | (d) | Semicolon (;) () | | | 7. | | ich of the following STL containers stores the elements continuously (in acent memory locations)? | L | | | (a) | std::vector () | | | | (b) | std::list () | | | | (c) | std::map () | | | | (d) | std::set () | | | III/B | CA/3 | 304 (R) /369 3 | Contd. | | 8. Which of the following cannot be used with the keyword virtual? | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | (a) Class () | | | (b) Member function () | | | (c) Constructor () | | | (d) Destructor () | | | O William and Called Called in a Comment of the Alexander | | | 9. Which one of the following forms is correct in the throwing mechanism? | | | (a) Throw (exception) () | | | (b) Throw exception () | | | (c) Throw () | | | (d) All of the above () | | | | | | 10. A pointer pointing to a variable that is not initialized is called | | | (a) null pointer () | | | (b) void pointer () | | | (c) empty pointer () | | | (d) dangling pointer () | | | III/BCA/304 (R) /369 4 | [Contd. | Indicate whether the following statements are *True (T)* or *False (F)* by putting a Tick (\checkmark) mark in the brackets provided : $1 \times 5 = 5$ **1.** An array of objects is stored inside the memory in the same way as a multidimensional array. (T / F) **2.** Functions and operators overloading are examples of run-time polymorphism. (T / F) 3. Overloaded operators can be overridden. (T / F) **4.** In multilevel inheritance, the constructors are executed in order of inheritance. (T / F) **5.** A virtual function cannot be a friend of another class. (T / F) SECTION—B (*Marks*: 10) Answer the following questions: $2 \times 5 = 10$ - 1. What is pure virtual function? Give an example. - 2. What is type casting in C++? Give an example. - **3.** What is command-line argument? - **4.** What is exception? How is it handled in C++? - **5.** What is scope resolution operator? ## (PART : B—DESCRIPTIVE) (*Marks* : 50) The figures in the margin indicate full marks for the questions **1.** (a) What is meant by data binding? Give example. 4 (b) Explain the basic concepts of object-oriented programming. 6 OR Describe the basic structure of C++ program. 4 (d) Explain the following terms: 6 (i) Data types in C++ (ii) Control structures in C++ (iii) Tokens and keywords **2.** (a) What is function in C++? Explain about the call-by-reference with an example. 6 (b) Explain the concept of inline function with an example. 4 OR (c) What is function overloading? Write a program to illustrate function overloading. 5 (d) What is friend function? Explain with an example. 5 **3.** (a) Explain about the copy constructor with a suitable example. 6 (b) Write the characteristics of constructor. 4 OR (c) Write a program to illustrate how the unary minus operator is overloaded. 6 (d) What is operator overloading? Write the operators that cannot be overloaded in C++. 4 | 4. | (a) | Explain different types of inheritance. | 4 | | | | | | | | | |----|-----|--------------------------------------------------------------------|---|--|--|--|--|--|--|--|--| | | (b) | Write a program to illustrate the concept of multiple inheritance. | 6 | | | | | | | | | | | OR | | | | | | | | | | | | | (c) | Write a program to illustrate the concept of virtual functions. | 6 | | | | | | | | | | | (d) | Write a program to illustrate the use of <i>this</i> pointer. | 4 | | | | | | | | | | | | | | | | | | | | | | | 5. | (a) | Explain the stream classes for console I/O operations. | 5 | | | | | | | | | | | (b) | Explain about getline() and write() functions in C++. | 5 | | | | | | | | | | OR | | | | | | | | | | | | | | (c) | Write a program to demonstrate the concept of rethrowing an | | | | | | | | | | | | | exception. | 5 | | | | | | | | | | | (d) | What is template? Explain the three key components of STL. | 5 | | | | | | | | | * * * ## **Professional Course Examination, November 2018** (3rd Semester) #### BACHELOR OF COMPUTER APPLICATIONS Course: BCA-305 (Computer Organization and Architecture) (Revised) Full Marks: 75 Time: 3 hours (PART : A—OBJECTIVE) (*Marks*: 25) The figures in the margin indicate full marks for the questions SECTION—A (Marks: 15) Tick (✓) the correct answer in the brackets provided : $1 \times 10 = 10$ 1. Which shift microoperation multiples a signed binary number by 2? - (a) shl () - (b) shr () - (c) ashl () - (d) ashr () | 2. | If R | 2 1011, | then I | ₹ . | \overline{R} | 1 is | | | | |----|------|-----------|---------|------|----------------|-------|-------|-------|-------| | | | | | | | | | | | | | (a) | 0100 | (|) | | | | | | | | (b) | 1100 | (|) | | | | | | | | (c) | 0110 | (|) | | | | | | | | (d) | 0101 | (|) | | | | | | | | | | | | | | | | | | 3. | Whi | ich of th | e follo | wing | g re | giste | rs ha | as 12 | bits? | | | (a) | AR | (|) | | | | | | | | (b) | IR | () | | | | | | | | | (c) | TR | () |) | | | | | | | | (d) | INPR | (|) | | | | | | | | | | | | | | | | | | 4. | Inst | ruction | to inc | reme | ent a | and | skip | if ze | ro is | | | (a) | INC | (|) | | | | | | | | (b) | SKI | (|) | | | | | | | | (c) | ISZ | (|) | | | | | | | | (d) | Both (a |) and | (b) | (|) | | | | | 5. | Sta | ck organiza | ation | employs | |-------|------|---------------------|--------|-----------------------------------| | | (a) | LIFO | (|) | | | (b) | FIFO | (|) | | | (c) | LILO | (|) | | | (d) | FILO | (|) | | | | | | | | 6. | Wh | ich of the | follow | ing is zero-address instruction? | | | (a) | MUL R1 | (|) | | | (b) | ADD B | (|) | | | (c) | MOV R1, | A | () | | | (d) | PUSH A | (|) | | | | | | | | 7. | Con | nmand use | d to | test various status conditions is | | | (a) | interrupt | | | | | (b) | I/O (|) | | | | (c) | control | (|) | | | (d) | status | (|) | | III/B | CA/3 | 305 (R) /370 | | 3 | [Contd. | 8. | The | DMA transfers are | e p | performed | d by a control circuit called as | | |-------|------|-----------------------|-----|------------|--------------------------------------|--------| | | (a) | device interface | | () | | | | | (b) | DMA controller | | () | | | | | (c) | data controller | | () | | | | | (d) | overlooker (| |) | | | | 9. | The | surrounding of the | e 1 | recently a | accessed block is called as | | | | (a) | neighbourhood | | () | | | | | (b) | neighbour (| |) | | | | | (c) | locality of reference | e | (|) | | | | (d) | None of the above | | () | | | | 10. | The | | s · | track of l | how many times a block is most likel | У | | | (a) | count () | | | | | | | (b) | reference counter | | () | | | | | (c) | use counter (| |) | | | | | (d) | probable counter | | () | | | | III/B | CA/3 | 305 (R) /370 | | | 4 [| Contd. | | | cate whether the following statements are <i>True (T)</i> or <i>False (F</i> ck (\checkmark) mark in the brackets provided : |) by : | puti | ting
1×5=5 | |------|--|------------|------|---------------| | 1. | The high-impedance state behaves like an open circuit. | (T | / | F) | | 2. | Hardwired control is faster than microprogrammed control. | <i>(T</i> | , | D.) | | 3. | RISC has variable length instruction format. | (T | / | r j | | | | (T | / | F) | | 4. | Interrupt is used to break the ongoing process of CPU. | (T | / | F) | | 5. | The DMA doesn't make use of the MMU for bulk data trans | | | | | | | (T | / | F) | | | SECTION—B | | | | | | (<i>Marks</i> : 10) | | | | | Ansv | wer the following questions : | | | 2×5=10 | | 1. | Explain memory transfer. | | | | | 2. | What is accumulator (AC)? | | | | | 3. | Write a note on Program Counter. | | | | | 4. | What is DMA? | | | | | 5. | How is data stored in a magnetic disk? | | | | # (PART : B—DESCRIPTIVE) (*Marks* : 50) The figures in the margin indicate full marks for the questions | 1. | (a) | Design a common bus system for four registers using 4×1 multiplexers and explain how it works. | 6 | |-------|-------|--|------| | | (b) | What are the basic arithmetic microoperations? Describe the symbolic designation of microoperations. | 4 | | | | OR | | | | (c) | What is binary adder? Construct a circuit diagram for 4-bit binary adder-subtractor using full adder. | 5 | | | (d) | What is a logic microoperation? Give a list of sixteen logic microoperations with their corresponding Boolean functions. | 5 | | 2. | (a) | What is computer register? List out registers for the basic computer and briefly explain their functions. | 5 | | | (b) | What is a computer instruction? Briefly explain any eight basic computer instructions. | 5 | | | | OR | | | | (c) | Explain four phases of an instruction cycle. | 4 | | | (d) | Briefly explain machine language, assembler and subroutines. | 6 | | 3. | (a) | What are the major components of CPU? Explain how CPU bus system directs information flow to perform operation R1 R2 R3. | 6 | | | (b) | Write a note on stack organization. | 4 | | III/E | BCA/S | 305 (R) /370 6 [Cor | ntd. | # OR | | (c) | Describe any four addressing modes. | 6 | |----|-----|---|---| | | (d) | What are the three basic types of data manipulation instructions? Give a list of shift instructions. | 4 | | 4. | (a) | What do you mean by interface? Explain the connection of I/O bus to input-output devices using diagram. | 6 | | | (b) | Explain strobe and handshaking for asynchronous data transfer giving suitable diagram. | 4 | | | | OR | | | | (c) | Discuss the three modes of transfer to and from peripherals. | 6 | | | (d) | What is IOP? Write a block diagram of a computer with I/O processor. | 4 | | 5. | (a) | What do you mean by memory? Explain the hierarchy of memory giving diagrams. | 4 | | | (b) | What is main memory? Explain the functions of RAM and ROM. OR | 6 | | | (c) | Write a note on virtual memory. | 5 | | | (d) | What is cache memory? What are the three types of mapping procedure? | 5 | * * *